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Quantum chemistry, Sobolev spaces and SCF

Albert Bacha, Lluis Amata, Emili Besalúa, Ramon Carbó-Dorcaa,∗ and Robert Ponecb

a Institut de Química Computacional, Universitat de Girona, Girona 17071, Catalonia, Spain
b Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Suchdol 2, Prague 6,

16502 Czech Republic

Received 29 August 2000

Extended wavefunctions, including the wavefunction gradient, and the norm induced
Sobolev spaces are presented as a mathematical structure well adapted to the approximate
quantum-chemical formalism, customarily used to handle the Schrödinger equation. A useful
application, related to the solution of SCF Euler equations in matrix form, is also analysed.
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1. Introduction

Solution of the generalised secular equation, related to the SCF Euler equations in
matrix form, can be associated to the pioneering procedure described by Löwdin several
years ago [1]. Such generalised secular equations forms appear because of the non-
orthogonality problem posed by the use of STO or GTO as AO basis sets within the
LCAO-MO formalism [2].

Although other possible transformations of the generalised secular equations,
such as the Choleski decomposition [3] or alternative manipulations [4], are possible,
Löwdin’s transformation has been analysed in deep in the current literature because of
the associated implications on MO theory and density function study; see for a recent
example the work of Mezey [5].

Löwdin’s and the previously quoted alternative manipulations of the generalised
secular equation are usually referred to the transformation of the AO basis setmetric
matrix, within the quantum chemical lore customarily also calledoverlap matrix, a term
which shall be taken as a synonym of the former mathematical concept. Overlap ma-
trix is, by construction, a positive definite matrix and this property is the basic feature,
which is used in all the mentioned procedures. However, within the so-calledab initio
computational framework, another matrix exists with the same property of positive defi-
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niteness, namely: the matrix representation of thekinetic energy operator. Although the
positive definite nature of the kinetic energy expectation value has been used and studied
from old times [6–8], as far as we know, there are no literature quotations dealing with
the analysis of such a property in the kinetic energy matrix representation, as well as its
possible use in practical solutions of SCF Euler equations.

Recently, in our laboratory, an analysis of the structure of the classical quantum-
mechanical wavefunction has been carried out [9], and several applications have been
published [10,11]. In this analysis the role of the wavefunction gradient has been put
forward in such a manner that the gradient components themselves were considered on
the same footing as the associated wavefunction, resulting into a new vectorial function
formalism, collecting both the wavefunction and its gradient as elements [9]. Several
consequences of this procedure have been obtained and employed afterwards.

In a first place, the kinetic energy density can be used to visualise other charac-
teristics of molecular surfaces, which are not contained in the space density alone [9].
Among other possibilities, one can mention the use of kinetic energy density functions
in the evaluation of similarity measures [12]. These kinetic energy density similarity
measures can be used as molecular descriptors in QSAR equations [13], analogous to
the ordinary ones based on space density. A particular application to discuss an apparent
MO paradox, related to the existence of nodal planes, has been also published not long
ago [14].

Based on previous work, our aim in this paper is to summarise briefly the earlier
theoretical results obtained in our laboratory and to associate them to the definition of
Sobolev spaces [15]. Once the needed simple mathematical framework is described, an
application of these ideas to the transformation of the SCF Euler equations in matrix
form will be discussed and a useful new SCF algorithm finally described.

Thus, this paper corresponds to another possible use of the extended wavefunction
and total density concepts.

2. Extended wavefunctions

In previous work [9], based on the well-established properties of wavefunctions
and their gradients [6–8], an extended wavefunction vector structure was postulated. In
order to make easier the following discussion, a résumé of the theory will be initially
presented.

2.1. Extended wavefunction and total density function

Suppose known a quantum system state energy–wavefunction pair:{E,�}. An
extended wavefunction can be easily constructed and formally written as the vector

|�〉 =
(
�

∇�
)
. (1)
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Many useful consequences can be deduced from this definition. Among others, the pos-
sibility to construct a joint total density involving the usualelectronic density function:

ρ = |�|2,
plus akinetic energy density function:

κ = |∇�|2,
producing atotal density function:

τ = Tr
(|�〉〈�|) = ρ + κ.

The fact must be noted now that the total density function is to be interpreted as the prob-
ability to find the parent quantum system in either a volume elementor being associated
to a given kinetic energy range. The grammatical particle “or” needs to be stressed and
considered as a logical symbol∨, in order to put in evidence the fact that such composite
total density fulfills the uncertainty principle.

2.2. Expectation values within extended wavefunctions

Extended wavefunctions can be used, under the assumption that Schrödinger equa-
tion is solved in an approximate manner. In this case, it can be shown thatall expecta-
tion values, even energy-like ones, can be written employing astatistical formalism [9].
That is, suppose known a quantum system, then if� is taken as an Hermitian operator
associated toany system observable, andρ is a system state density function, then the
expectation value〈ω〉 of the chosen observable of the system state can be expressed in
any case as

〈ω〉 =
∫
D

�ρ dV. (2)

Implications of this theoretical possibility have been used to study the Hohenberg–
Kohn theorem [16], while connecting a generalised form of it with perturbation the-
ory [17].

2.3. Energy and extended wavefunctions

An immediate application of the statistical expectation value integral (2) can be
performed in the energy expression of a quantum-mechanical system. If the extended
wavefunction (1) is employed and in consequence the system Hamiltonian operatorH
(in atomic units) can be rewritten in a diagonal form:

H =

V 0

0
1

2
I


 ,

where the potential operator is represented byV and I represents a unit operator with
the appropriate dimensions to make it compatible with the gradient part of the extended
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function. Then, if the expectation value of the Hamiltonian is obtained in the usual
quantum-mechanical way:

E = 〈�|H|�〉 = 〈�|V|�〉 + 1

2
〈∇�|∇�〉

=
∫
D

Vρ dV + 1

2

∫
D

κ dV = 〈V〉 +K, (3)

one can see that not only the energy expression does not change, from the classical sum
expression involving both potential plus kinetic energy terms, but also that it can be
structured as the sum of two expectation value integralsstatistically expressed. This
result, besides of other fundamental implications, possesses the important consequence
to establish a theoretical foundation of the quantum QSAR equations [18].

3. Sobolev spaces and extended wavefunction norm

Sobolev spaces play an important role in mathematical analysis. Defined in
1938 [19], they have also been used in the theory of general relativity [20]. Sobolev
spaces [15] are to be considered in general as Hilbert functional spaces [21–23], which
can be associated to a Banach space structure [24,25], with the particular characteristic
that the norm definition includes the derivatives of the space functional elements. Thus,
norms for a function�, belonging to a Sobolev space, can be written as follows:

‖�‖mn =
m∑
p=0

∥∥∇p(�)∥∥
n
=

m∑
p=0

∫
D

∣∣∇p(�)∣∣n dV.

In the above defined Sobolev norm, the symbol∇p ≡ ⊗p

k=1∇, for p > 0, and the
convention∇0(�) ≡ � applies. Thus, the Hilbert–Schmidt norm [26] of the extended
wavefunction|�〉, presented above in equation (1), which can be written as

‖�‖2 = 〈�|�〉 ≡ ‖�‖12 = ‖�‖2 + ‖∇�‖2,
can be considered to induce a Sobolev space structure with Hilbert–Schmidt norms over
the wavefunction�, and involvingboth the wavefunction and its gradient.

After having obtained the connection between the total density and Sobolev spaces,
one can try to find out some physical interpretation of this abstract situation. Then, using
the appropriate definition of Hilbert–Schmidt norm and the usual quantum-mechanical
meaning associated to the corresponding integrals, one obtains:

‖�‖2 =
∫
D

|�|2 dV +
∫
D

|∇�|2 dV =
∫
D

ρ dV +
∫
D

κ dV = 1+ 2K,

where the normalisation of the wavefunction and the quantum-mechanical definition of
the kinetic energy expectation valueK have been used; that is,∫

D

|�|2 dV =
∫
D

ρ dV = 1
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and ∫
D

|∇�|2 dV = −
∫
D

�∗∇2� dV =
∫
D

κ dV = 2K, (4)

respectively.
Thus, from the extended wavefunction composite density, one can deduce that both

space and momentum norms are treated as independent elements of the same structure.
This fact inspires the construction of the next section and, in this way, also the develop-
ment of the main goal of this contribution.

4. Kinetic energy matrix representation and metric matrices

As mentioned above, when the MO-LCAO theory is used to solve the Schrödinger
equation in a discreten-dimensional space framework, the AO basis set not only gener-
ates the matrix representations corresponding to the involved operators, but the metric
matrix acquires a non-negligible role. In this section, the connection of the kinetic en-
ergy matrix representation with the overlap matrix will be analysed.

Thus, in order to start from the well-known principles, let us suppose that an AO
basis set is known and that it can be represented by the symbols

〈χ | = (χ1, χ2, . . . , χn).

Then the overlap matrixS is defined in terms of the integrals employing in turn the scalar
products between pairs of the AO basis set functions:

S =
{
Sij =

∫
D

χ∗i χj dV

}
.

On the other hand, the kinetic energy matrix representationK using the same AO basis
set is defined as [27,28]

K =
{
Kij =

∫
D

(∇χi)∗(∇χj)dV = −
∫
D

χ∗i ∇2χj dV

}
. (5)

Equation (5) has been used from the initial construction of GTO-based integrals [27–29].
In the same manner as equation (4), it is immediately deducible from Green’s theo-
rem [30].

By construction, both metric and kinetic energy matrices are positive definite ar-
rays. Such positive definite matrix property has to be joined consequently to the property
of being Hermitian with real eigenvalues, which are positive definite too, and thus, those
matrices are both non-singular. More information about positive definite matrices can
be obtained from [3,31–33].
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5. Generalised kinetic energy secular equation and Sobolev transformation

Because of the discussion carried out in the previous sections, a close relationship
shall be expected between bothS andK matrices. It is easy to realise that thegener-
alised secular equation of the kinetic energy matrix representation provides one of such
connections. Indeed, the following generalised secular equation:

KX = SX�, (6)

where the eigensystem{�;X} joins the eigenvalue spectrum collected into a positive
definite diagonal matrix� with the matrixX, which contains as columns the generalised
kinetic energy eigenvectors ordered in the same way as the eigenvalues are.

So far, nothing appears noticeable, but one can focus the attention to the following
equalities, which can be straightforwardly deduced. Both equations:

X+KX = � (7)

and

X+SX = I, (8)

hold at the same time, as a consequence of the fulfillment of the generalised secular
equation (6). The symbol+ over the matrixX+, present in equations (7) and (8), as well
as in the following discussion, stands for the complex conjugation and transposition,
applied in arbitrary order over the matrixX, that isX+ = (X∗)T = (XT)∗.

Now one is facing the interesting fact such that the kinetic energy generalised
eigenvector matrixX corresponds to anon-singular transformation, which not only di-
agonalizes the kinetic energy representation matrixK but also can besimultaneously
associated to anorthonormalised set of column vectors with respect to the metric ma-
trix S.

So, when dealing with quantum-chemicalab initio procedures, such a transforma-
tion may be of value when solving generalised secular equations associated to a matrix
sum, containing the kinetic energy representation. In these cases, the eigenvector ma-
trix X can have a leading role as an alternative orthogonalisation transformation of the
secular system matrices, corresponding as well as to a simplification of the intervening
matrix structure. For obvious reasons, such a transformation will be called from now on
a Sobolev transformation.

6. Sobolev transformation of SCF Euler matrix equations

A simple but illustrative example of the possible use of Sobolev transformation
can be found in the SCF theory in matrix form, first discussed by Roothaan [34] and
Hall [35].
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When dealing with the closed shell one determinant SCF Euler equations in ma-
trix form, see, for example, the well-structured McWeeny’s treatise [2], the following
generalised secular equation has to be solved:

FC = SCE. (9)

In the above equation,F is the Fock matrix, which can be supposedly constructed as the
sum of three matrices, in the form [2]

F = 1

2
K+ N+ R(C),

whereK is the kinetic energy matrix,N corresponds to the nuclear attraction operator
matrix representation and, finally,R(C) is the electronic repulsion. The implicit de-
pendence of the repulsion matrix on the eigenvector matrixC is written explicitly as a
functional dependence [34]. The diagonal matrixE collects the Lagrange multipliers
associated to the constrained electronic energy minimisation process [2,34].

The Sobolev transformation can be employed into the generalised secular equa-
tion (9). The whole transformation process will yield a new secular equation, which can
be written now as

FSZ = ZE,

where the Sobolev transform of the Fock operator matrix representationFS is easily
defined as

FS = X+FX = 1

2
�+ NS + RS(C),

while the Sobolev transforms of the nuclear attraction and repulsion matrices are defined
in the same way, that is,

NS = X+NX

and

RS(C) = X+R(C)X.

The transformed eigenvectors are related to the initial ones by an inverse Sobolev trans-
form:

Z = X−1C. (10)

However, the inverse of the eigenvector Sobolev transformX will be usually never
needed in the present SCF algorithm. This is so because, once the Sobolev transformed
Fock operator matrixFS is known, and its eigenvectorsZ are computed by means of any
standard diagonalization procedure [3], then the original generalised eigenvectorsC can
be simply retrieved by the immediate product of the Sobolev transform matrix, in such
a way as

C = XZ.
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So, in this manner a sketch of the procedure, which one must follow when using Sobolev
transformation in SCF algorithms, has been established.

In appendix a simple way to compute the Sobolev transform inverse, as appearing
in equation (10), is presented along with other properties of interest.

7. Sobolev transform in SCF algorithm

From the discussion above performed, one can construct straightforwardly the fol-
lowing scheme, whose steps schematise the procedure to be carried out, if Sobolev
transformation is to be used in solving such a SCF problem. For simplicity, a closed
shell monodeterminantal computation has been chosen. The SCF algorithm described
by Veillard [36] can be consulted for details referring to the fundamental aspects other
than Sobolev transformation.

SCF and Sobolev transform algorithm

(A) ComputeS, K matrices.

(B) Solve the generalised secular equationKX = SX�.

(C) ComputeN and Sobolev transform it:NS = X+NX.

(D) Compute the repulsion hypermatrixG.

(E) Compute the Sobolev-transformed one-electron Hamiltonian:hS = (1/2)�+ NS.

(F) Set initial Sobolev-transformed Fock operator:FS← hS.

SCF:do

(a) Solve the secular equationFSZ = ZE.

(b) Retrieve MO eigenvector matrixC = XZ.

(c) Compute charge and bond order matrixD = 2
∑

k∈C ckc
+
k .

(d) Perform convergence tests: if converged,exit SCF.

(e) Compute repulsion matrix by the contracted product:R(C) = G : D.

(f) Sobolev transform the repulsion matrix:RS(C) = X+R(C)X.

(g) Construct a new Sobolev-transformed Fock operator:FS← hS + RS(C).

End do SCF.

End of the algorithm.

Several tests of Sobolev algorithm as above described have been made within SCF
programs entirely developed in our laboratory. The results, obtained in a wide variety
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of closed shell molecular systems and basis sets, show, in a first instance, the same
behaviour as classical SCF procedures.

On the other hand, it is not so difficult to imagine that similar steps and algorithms
can be devised for other SCF forms, mainly in open shell structures as defined by one of
us several years ago [37–39].

At the same time, the Sobolev transformation not only can be viewed as a possi-
ble alternative transformation of the Fock matrix for SCF purposes, producing a neat
diagonalization sequence and an elegant algorithm. On the contrary, Sobolev transfor-
mation can be also considered as a global AO integral transformation which can prepare
the computational problem in such a way as to yield an orthonormalised non-local basis
set, leaving the system’s energy invariant and possessing appealing properties for further
applications.

8. Conclusions and final remarks

8.1. Conclusions

The most interesting result of this paper may be associated to the fact that, through
Sobolev spaces, it is clearly shown that the extended wavefunctions, constructed contain-
ing both the wavefunction itself and its first derivative, acquire a well-defined Banach
space structure. In consequence: a sound Hilbert space form.

One can also admit that within LCAO-MO theory, in a way suggested by the
Sobolev space structure of the deducible extended density function, the metric and ki-
netic energy representation matrices are easily connected in terms leading to a useful
transformation matrix.

Sobolev spaces and the derived transformation, involving the generalised eigen-
vectors of the kinetic energy matrix representation, can be considered as an appreciable
mathematical tool, which can turn to be of value in the computational world of quantum
chemistry, and more specifically, in the discrete matrix representation scenario of the
involved Hermitian operators associated to system observables.

A straightforward application procedure, designed in order to simplify the SCF
algorithm, can be easily built up from the theory of Sobolev wavefunction extended
spaces.

8.2. Remarks

Extension of the quantum-chemical Sobolev norms to higher derivatives will natu-
rally lead first to the introduction of a mass variation with velocity term [40], which has
already been employed to visualise alternative molecular density surfaces [9]. Thus, a
term appearing in Breit Hamiltonian [41] will follow. This will induce the presence of
the wavefunction Laplacian in the extended wavefunction structure and, consequently,
the Laplacian norm in the corresponding Sobolev space. This possibility points out to-
wards the connection between classical and relativistic formulations of quantum chem-
istry. A first attempt in order to elucidate this connection has already been made [9].
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The possibility to add more terms in the extended wavefunction vector seems ap-
pealing. This may be used to obtain non-linear or alternative Schrödinger equations other
than equation (3), see for an excellent review the work of Fraga et al. [42]. Such proce-
dures will lead into extended Sobolev spaces, as well as other alternatives and structures
still waiting to be disclosed.

However, these appealing possibilities will not be further discussed here. The rea-
son to proceed like this can be justified in order to preserve as much as possible the
plainness and the beauty of the simplest Sobolev space features, when applied to one of
the most usual quantum-chemical problems.
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Appendix. Sobolev transform inverse

From inspection of equation (8), it appears immediately that the inverse structure
X−1 of the Sobolev transformationX can be written as the trivial matrix product:

X−1 = X+S. (A.1)

This result may appear at first glance as an inverse on the left, but taking into account
that the following matrix product,

P = XX+S,

can be considered as a projector over thefull space generated by the kinetic energy
generalized eigenvectors, then also it can be equivalently written:

XX+S = I.

In this way, one can consider that equation (A.1) corresponds to a full inverse of the
Sobolev transform. Consequently, equation (10) can be written alternatively as

Z = X+SC.
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